

Analysis of Technology Hesitancy in Aging and Disabled Communities

White Paper Developed for AT&T

World Institute
on Disability

Contents

<u>Executive Summary</u>	3
<u>History and Development</u>	6
<u>Literature Review</u>	8
<u>Key Barriers to Adoption</u>	8
<u>Privacy Concerns and Trust Issues</u>	8
<u>Cost, Accessibility, and Usability of Technologies</u> ...9	
Fragmented Accessibility and the Cost	
Customization.....	10
Perceived Lack of Need and Confidence.....	11
Limited Training and Support for Older Adults in	
Technology Use.....	12
<u>Conclusion</u>	13
<u>Recommendations</u>	15
Normalizing Technology Development / Universal	
Design.....	15
Addressing Perceptions of Safety and Risk.....	16
Providing Training.....	18
<u>About the Authors</u>	20
<u>Bibliography</u>	22

Executive Summary

This white paper explores the multifaceted barriers to technology adoption among aging and disabled populations, addressing concerns related to privacy, trust, cost, usability, stigma, and lack of tailored support. Despite ongoing technological innovations that could greatly improve independence, safety, and well-being, adoption rates remain low. Reportedly, this is due to overlapping social, economic, and psychological factors (Yusif, Soar, & Hafeez-Baig, 2016).

Information and Communication Technology (ICT) has evolved rapidly, reshaping how individuals engage with daily tasks and services. However, this digitization has simultaneously introduced accessibility challenges, especially for older adults and those with disabilities who are often excluded from the design and development process (Pedlow, Kasnitz, & Shuttleworth, 2010).

Assistive Technology (AT), while promising, continues to face significant obstacles to widespread integration. Many tools and devices lack the usability features necessary for aging and disabled users and are often prohibitively expensive. These issues are further exacerbated by limited insurance coverage, fixed incomes, and economic constraints that prevent meaningful access (Yusif, Soar, & Hafeez-Baig, 2016). Moreover, many consumers feel that available technologies overlook their specific needs, which leads to navigation difficulties and abandonment of use.

Privacy and trust issues remain central concerns. Users frequently express anxiety around data security and the potential for technological dependence.

These concerns are not unfounded and highlight the critical importance of improving transparency, establishing robust consumer protections, and building relationships between developers and users that are rooted in respect and empathy (Kim, 2021).

Stigma associated with certain technologies adds another complex layer. Products designed specifically for aging or disabled users may unintentionally amplify feelings of vulnerability or reinforce negative societal narratives about dependence and loss of autonomy. This stigma can be driven by cultural messaging, internalized biases, or prior experiences with inadequate or alienating technology (Pedlow, Kasnitz, & Shuttleworth, 2010).

Another common barrier is the perceived lack of necessity. Individuals who do not currently experience significant disability may not recognize the value of adopting supportive technologies until a health or life event occurs. Without early exposure or education, interest in these innovations can remain low. Compounding this issue is the limited availability of training and long-term support, which can make even well-designed products difficult to incorporate into everyday life.

While aging and disability often intersect—particularly when individuals acquire disabilities later in life—it's vital to acknowledge the differences in their lived experiences. Age-related challenges frequently stem from unfamiliarity with evolving digital platforms, rapid shifts in tech innovation, commitment to copper wire, and cognitive changes that affect adoption.

Disabled individuals, especially those who have long depended on assistive technologies, face different barriers such as inaccessible interfaces, lack of compatibility between devices, and pervasive stigma limiting their access.

To effectively address these barriers, a multi-pronged approach is needed—one that incorporates inclusive design principles, community-centered education, accessible training models, and meaningful policy reform. Universal design must be embraced at all stages of development, with users involved directly in ideation, prototyping, and testing. Education efforts should be personalized to meet users where they are, empowering them to feel confident and independent. Policies must evolve to support equitable access, including subsidies for assistive technologies and mandates for accessibility standards across all digital services. Perhaps most importantly, community-led initiatives that prioritize localized needs and amplify lived experiences can serve as powerful models for inclusive technology adoption.

Advancing equitable access will require coordinated efforts among technologists, policymakers, caregivers, and especially, end users themselves. By honoring the diversity within aging and disabled communities and committing to intentional, inclusive development, technology can evolve as a true enabler—one that enhances autonomy, dignity, and participation in today's digital society.

History and Development

Information and Communication (ICT) has evolved dramatically over the past several decades,

reshaping how people communicate, access information, manage their health, and participate in civic and economic life. From the internet's expansion in the 1990s to today's widespread use of smartphones, wearable devices, and artificial intelligence (AI)-powered systems, ICT is now deeply embedded in the routines and rhythms of modern society.

Yet, this rapid evolution has not been universally inclusive. Aging adults and individuals with disabilities continue to face substantial barriers—not only in usability but also in affordability, digital literacy, and design bias. Early ICT infrastructure was often developed without accessibility in mind, leaving behind users of screen readers, individuals with cognitive disabilities, and those requiring alternative input methods (Goggin & Newell, 2007).

While ICT has surged forward, the development of Assistive Technology (AT) has often been more fragmented and slower-moving. Unlike mainstream technology, which targets large consumer markets and scales quickly, AT typically responds to specific needs and is shaped by localized innovation. This divide has created persistent gaps in interoperability and integration. Many digital platforms remain incompatible with screen readers, voice control systems, or switch-access tools, compelling disabled users to adopt costly third-party solutions or settle for cumbersome workarounds. The treatment of AT as a niche category—rather than a fundamental component of inclusive design—only deepens systemic exclusion and impedes broader adoption.

To close the gap between ICT and AT, a shift toward universal design is essential. This approach involves reimagining innovation to include disabled communities from the outset, integrating their experiences and expertise into development cycles and ensuring that core technologies are both functional and flexible for diverse users.

Policies such as the Web Content Accessibility Guidelines (WCAG) and Section 508 of the U.S. Rehabilitation Act have helped advance inclusive design practices, but their application remains inconsistent. As a result, efforts to ensure digital equity still fall short—particularly for those navigating both aging and disability (Jaeger, 2012).

Despite improvements in infrastructure, such as expanded broadband access and cloud-based health tools, adoption remains disproportionately low among older and disabled populations. According to Pew Research Center, internet use among U.S. adults aged 65 and older has climbed to 75%, yet it continues to lag behind younger groups, with disparities further compounded by disability, income, and education (Anderson & Perrin, 2021).

Beyond physical and cognitive access barriers, users face frequent changes to interfaces, opaque privacy policies, and complex update cycles—all of which can foster confusion and resistance. Sociological factors also play a role. Many individuals express skepticism toward unfamiliar technologies, seeing little incentive to abandon trusted low-tech methods without the presence of meaningful training and support. These layered challenges contribute to widespread “technology hesitancy”: a state where users technically have access but feel neither empowered nor motivated to engage.

Meeting these challenges requires an honest recognition that ICT's evolution has often prioritized speed and scalability over inclusion. Real progress toward universal design and widespread adoption must center the perspectives of those historically sidelined in the tech sector. Only by elevating lived experience and embracing inclusive development can ICT reach its full potential as an engine of equity and empowerment.

Literature Review

Key Barriers to Adoption

Research continues to highlight critical barriers to technology adoption among aging and disabled populations. The 2025 AARP/CTA Age Tech Report reveals that while 89% of adults aged 50 and older express a desire to age in place, an equal proportion harbor concerns about doing so. Despite 71% identifying connected medical alert devices as helpful technologies, only 3% currently own one—illustrating a significant gap between perceived benefit and actual adoption (AARP & CTA, 2025). Several interrelated factors contribute to this hesitancy, including limited awareness, inaccessible design, insufficient training, physical and cognitive decline, and a general lack of confidence in using unfamiliar digital tools (Hargittai, 2002; Czaja & Sharit, 2013).

Privacy and Trust Concerns

Privacy and trust issues are especially prominent among older adults and individuals with disabilities. Users often worry that assistive technologies may compromise their privacy, reduce their autonomy, or be used to monitor them rather than support them (Pedlow, Kasnitz, & Shuttleworth, 2010). These anxieties are informed by historical experiences of exclusion, inadequate consent frameworks, and unfamiliarity with digital data practices. Zaman et al. (2022) underscore that trust involves not just the technology itself but also the institutions behind it. In their review of ICT usage among older adults with chronic conditions, many participants voiced concerns about data misuse, a lack of

transparency, and unease with digital services replacing interpersonal care. These sentiments reflect broader trends in technology hesitancy, as the absence of clear privacy protections, limited human interaction, and poor relational continuity weaken user confidence. In addition, skepticism toward service providers and perceived unreliability of devices reinforce disengagement (Yusif, Soar, & Hafeez-Baig, 2016). Addressing these challenges requires developers and providers to foster trust through transparent data practices, user-centered technical support, and privacy and security safeguards built into every stage of design. Trust must be treated as a foundational component of any technology strategy aimed at marginalized users.

Cost, Usability, and Accessibility of Technologies

Cost, accessibility, and usability also remain substantial hurdles. Although technology increasingly plays a pivotal role in daily life, high costs present a barrier for older adults—particularly those with fixed incomes or limited financial support. Rocheleau et al. (2020) identify affordability as a key determinant of adoption, further complicated by inadequate insurance coverage and few financial assistance mechanisms. The AARP/CTA report affirms this challenge: 68% of respondents aged 50 and older would only consider personal health technologies if they were free or covered by insurance, and 41% cited the expense—both initial and ongoing—as a major deterrent. These costs often seem duplicative and unnecessary when people already rely on existing tools that feel sufficient or familiar.

Usability concerns compound these financial limitations. While older adults prioritize reliability, ease of use, and accuracy when evaluating new technologies, many products still fail to accommodate the practical needs of aging and disabled users. Poor navigation, unintuitive interfaces, and a lack of perceived added value frequently lead to rejection. Devices that are difficult to understand or do not improve upon existing low-tech solutions are unlikely to be adopted unless they demonstrate meaningful utility in an accessible way.

The prevalence of cognitive, sensory, and motor disabilities among aging populations further complicates interactions with digital tools. Rosenberg and Nygård (2014) found that older adults with cognitive impairments often face challenges adapting to digital interfaces, particularly when frequent updates change established usage patterns. Interface elements like abstract navigation logic, hidden settings, and irregular updates become formidable obstacles, decreasing user engagement over time. Similarly, small buttons, low-contrast displays, and poor voice recognition can alienate those with visual, motor, or dexterity limitations. Limited customization options only deepen the challenge, as individuals are often unable to adjust devices to meet their unique preferences and requirements.

Altogether, the research suggests that meaningful technology adoption for aging and disabled populations depends not just on access—but on inclusion, affordability, transparency, and design integrity. Without these considerations, even promising technologies can fall short of their potential impact.

Further complicating matters is the uneven distribution of accessibility features across product tiers. Advanced functionality—such as customizable interfaces, robust voice control, or compatibility with assistive technologies—is frequently reserved for higher-end models. Users on fixed incomes are thus faced with an unfair tradeoff: choosing between affordability and access to features essential for participation and safety. These dynamics reflect broader systemic issues, where market design and pricing structures inadvertently exclude vulnerable groups.

To confront these challenges, technology developers must rethink design and deployment strategies. Accessibility should not be treated as an optional luxury—it must be an embedded feature in all devices and systems, regardless of price point. Affordability must be balanced with intuitive design and customization options, empowering users to tailor technology to their needs rather than adapting themselves to rigid systems. Only by dismantling structural barriers and re-centering inclusive development can aging populations achieve equitable access to digital tools, enabling them to live with dignity, autonomy, and connection in their communities.

Fragmented Accessibility and Cost Customization

The landscape of accessibility or customization features is fragmented across devices, complicating the search for a cohesive and fully accessible solution. For instance, in the mobile phone industry, users typically must choose a service plan before selecting a device. For individuals who are accustomed to copper wire telephone technology, comparative analysis between service plans can be an initial barrier. This practice also restricts users' ability to prioritize accessibility during their decision-making process. Furthermore, many advanced accessibility features are often exclusive to more expensive models, forcing users to choose between affordability and necessary accessibility.

Addressing these barriers is vital. To enhance usability and accessibility across age groups, technology developers must focus on creating solutions that are not only affordable but also intuitive and customizable. Only then will aging populations have equitable access to the benefits of technology, fostering a more inclusive digital environment that empowers individuals to age with dignity, independence and safety in a community setting.

Perceived Lack of Need and Confidence

The shift away from copper to fiber and next generation wireless infrastructure can create anxiety for older adults who feel pressured to transition to a system they neither fully understand nor trust. Technology adoption is often shaped by prior exposure and familiarity. Those with past experience using digital tools are generally more willing to adopt new technologies, while those without such backgrounds tend to struggle with integration into their daily routines (Nygård, 2008). In many cases, individuals may not fully understand how technology can benefit them—particularly if they are not yet living with significant disabilities or have not encountered challenges using traditional, low-tech communication devices. This lack of awareness frequently delays adoption until the need becomes unavoidable or acute.

One unique barrier to broadband adoption among people who are aging is their long-standing reliance on copper-based telephone networks. For decades, copper lines represented the most reliable form of communication, offering consistent voice quality, widespread access, and a sense of security during emergencies. Many older adults remain deeply committed to this technology, perceiving it as more stable and trustworthy than fiber or broadband wireless alternatives.

This attachment is rooted in practical and emotional considerations. Copper lines typically work during power outages without requiring additional equipment, a feature that aging populations often view as vital for safety. In contrast, broadband connections may rely on electrical power and new equipment such as modems or routers, introducing unfamiliar complexities and perceived vulnerabilities, making the move to broadband feel less like an upgrade and more like a loss of reliability and independence. As a result, even when broadband access is physically available and affordable, adoption rates may lag among older adults who continue to equate copper with certainty and resilience. Addressing this hesitancy requires reassurance that new technologies can meet or exceed the dependability of copper.

Perceived usefulness plays a key role in driving technology uptake. Older adults are more inclined to adopt digital tools that offer tangible benefits in their daily lives. Studies have shown that applications supporting transportation, educational access, or social engagement tend to see higher adoption rates (Berkowsky, Sharit, & Czaja, 2018). Similarly, technologies that help users manage routines, maintain relationships, and sustain independence are more readily embraced (Hedman et al., 2016).

Another pivotal factor is confidence in one's ability to learn and use new technologies. Research suggests that self-efficacy—a belief in personal ability—has greater influence over adoption than the complexity of the tool itself (Czaja et al., 2006). This indicates that interventions aimed at boosting confidence and skill-building may be more impactful than efforts to simplify technology design alone.

Negative sociological perceptions can also deter adoption. Technologies marketed specifically to older or disabled individuals often carry stigmatizing connotations, which may reinforce bias or trigger resistance. Although these technologies are designed to support independence, some users perceive them as symbols of decline or dependence—associations drawn from societal narratives around aging, autonomy, and assistive support. The concern that increasing reliance on technology might parallel other experiences of diminishing independence is a deeply embedded psychological barrier.

Limited Training and Support for Older Adults in Technology Use

Older adults frequently express both enthusiasm and apprehension toward digital technology. The 2025 Age Tech Report found that while 66% of adults aged 50 and older believe technology simplifies daily life, many also find the pace of innovation overwhelming (AARP & CTA, 2025). This tension underscores the need for meaningful education, hands-on training, and long-term support systems to sustain engagement. Trust plays a central role in overcoming technology hesitancy. According to Ciccarelli et al. (2017), older users often withhold acceptance due to skepticism toward both the technologies and the institutions that promote them. The Technology Acceptance Model (TAM) highlights trust as a function of perceived usefulness, ease of use, and reliability—traits that are frequently absent in inaccessible or poorly designed systems. While updates may improve functionality, they can also reinforce doubt, creating a recurring cycle of confusion and mistrust.

Training gaps present a major obstacle. Many older adults lack consistent exposure to new technologies and often do not receive sufficient guidance to incorporate them into daily life (Cotten et al., 2016; Czaja & Sharit, 2013). The absence of tailored programs that support gradual acculturation makes learning more difficult and exacerbates feelings of intimidation. Training is commonly delivered through other technologies—such as online modules or mobile apps—which can pose accessibility issues for those with limited digital literacy. Multi-sensory, real-time training is often preferred but remains largely unavailable or underutilized.

In many cases, the most accessible training resources are family members or caregivers. While well-intentioned, these relationships are sometimes complex and emotionally charged, which can hinder independent learning and diminish self-confidence (Asghar et al., 2018). Older adults may fear being perceived as dependent or incapable, especially in social or professional contexts, further discouraging adoption (Niemeijer et al., 2015).

Ultimately, addressing these barriers requires a thoughtful approach to education and empowerment—one that fosters skill-building, enhances self-efficacy, and provides respectful, culturally competent support. As technology continues to shape aging experiences, responsive training strategies and compassionate engagement will be key to ensuring equitable participation.

Conclusion

Technology holds immense potential to advance autonomy, well-being, and social inclusion for aging and disabled populations—but only when it is developed and implemented with their diverse needs, values, and lived experiences at the forefront. Failure to address technology hesitancy risks compounding existing inequities; as digital systems become more embedded in everyday life, aging and disabled individuals face growing threats to their access to support, connection, and independence.

Importantly, persistent hesitancy toward technology adoption within these communities does not reflect personal reluctance or inability. Rather, it reveals enduring systemic barriers—ranging from inaccessible design and opaque privacy practices to unaffordable tools and historical exclusion from innovation processes.

This paper has explored how trust, usability, affordability, and adequate support systems interact to shape adoption behaviors. It argues that the burden of overcoming these barriers should not rest solely on individual users. Instead, it calls for a collaborative response from technologists, policymakers, healthcare professionals, researchers, and advocates to build solutions that are not just technically functional but also socially and culturally attuned.

Progress demands intentional investment in inclusive design, direct collaboration with aging and disabled individuals, transparent data governance, and sustained, accessible support structures. Reducing technology hesitancy is not simply about expanding usage—it is about forging a digital future where all individuals are empowered to engage fully and authentically, on their own terms, and in ways that reflect and respect their values.

Inclusive Design

- empowers -

All Individuals

Recommendations

Technology has the potential to enhance autonomy and quality of life for aging and disabled individuals living independently in the community. Bringing these benefits to fruition requires eliminating adoption barriers through strategic interventions that address privacy, cost, usability, stigma, and education. Fostering a cross-sector inclusive approach to technology development and deployment can ensure that community members fully benefit from advancements in universal access and designs to meet their specific needs. ICT hesitancy is evidence of a multi-sourced challenge that requires a multi-pronged solution.

Normalizing Technology Development/Universal Design

There is a clear need for rebranding and reimagining mainstream technologies to meet the needs of aging populations rather than relying solely on niche "age tech" categories. This involves integrating accessible features into widely available products and marketing them accordingly (AARP & CTA, 2025). As is the case for accessibility on a broader scale, an evidence based strategy for increasing technology adoption is a universal design strategy as opposed to a population centric approach. This is especially important for people who are aging with a disability but who may not identify their needs as disability, or accommodations, related. Many older adults hesitate to move away from copper because broadband feels unfamiliar. Providers can build trust through simple, jargon-free explanations, in-person demonstrations, and accessible guides that show how broadband works and how it can replicate the perceived benefits of copper. Hands-on training and peer-to-peer learning programs can also reduce intimidation and build confidence.

Aiming for universal design, and at minimum, designing with inclusivity in mind—from the outset—can reduce retrofitting costs and ensure technologies are usable by the broadest population. Older adults are more likely to adopt tools that reflect familiar mental models and prioritize simplicity (National Science and Technology Council, 2019), a finding that aligns with universal design principles. Promoting inclusive design practices ensures that mainstream technologies accommodate and enhance the experience of diverse users.

Increasing the visibility of accessible features in product marketing and public awareness campaigns and incentivizing “trying” and “switching” can further enhance the goal of technology uptake. Additionally, fostering collaboration between technology developers and disabled and aging user communities is crucial to improving usability and creating solutions that truly meet the needs of all users. As the population of technology developers grows, along with the population of people who are aging with a disability, there is an opportunity to prioritize product designers, marketers and promoters who are both people with lived experience with disabilities to bring lived-experience and first hand perspectives to the design, development, and delivery of public facing technology.

Addressing Perceptions of Safety and Risk

Providing clear and accessible information about security measures in plain language and easy to access locations enhances transparency in data collection and user privacy policies. Simple universal design principles such as using larger font, non-technical terminology, plain language, and multi-lingual information in electronic and hardcopy, with contact information for additional information can address perceptions of safety and risk. This approach helps build user trust with the technology itself and the provider, it also supports individuals to feel more secure when sharing their data through technology portals.

Providers should directly address concerns about reliability by highlighting broadband’s ability to deliver dependable service equal to—or better than—traditional copper lines. Messaging should emphasize features like battery backup for equipment, continuity during outages, and emergency response compatibility, ensuring older adults that broadband is not a downgrade in safety. This messaging effectiveness can be increased through promoting the use of broadband in activities such as emergency preparedness and personal preparedness for everyday crises.

Developing regulations to protect users at higher risk from exploitation is essential for creating a safer online environment. In conjunction with protective regulations and monitoring and enforcement, public awareness campaigns to highlight these above protections create understanding and engender trust for community members. Clear comprehensive information on safety, risks, and safeguards can replace misinformation with correct information; breaking down barriers caused by the misinformation.

Policymakers should recognize the unique reliance older adults place on copper networks and ensure that the transition to broadband is inclusive and equitable. This can include requiring providers to offer battery backup options, mandating clear consumer education on reliability and emergency functionality, and funding digital literacy programs tailored to aging populations. Public policy should also incentivize broadband plans and support services designed to meet the safety, affordability, and accessibility needs of people who are aging and people with disabilities, ensuring no one is left behind as copper infrastructure is phased out.

Incorporating the methods proposed by Ciccarelli et al. (2017)—specifically scoping review techniques to identify trust-influencing factors—can assist policymakers in building technologies that better align with the values and lived realities of older and disabled adults. This trust-centered perspective can ultimately reduce technology hesitancy and increase adoption.

Providing Training

Effective onboarding and education are essential components of accessibility, especially when introducing new tools to populations who may not have grown up with them. As noted in the report *Emerging Technologies to Support an Aging Population*, older adults are more likely to engage with technology when training is hands-on, context-aware, and responsive to their feedback (National Science and Technology Council, 2019). These findings reflect similar patterns observed in user testing across disability communities, where personalized support leads to higher satisfaction, greater confidence, and increased adoption rates.

Implementing formal and informal training programs specifically tailored to the needs of older adults and individuals with disabilities can help address barriers. Considered training topics should include particular technologies, use recommendations, and common questions around purpose, benefits, and safety.

Providing transition support services and encouraging peer mentorship and community-based technology support initiatives may ultimately be more impactful than formal training curricula. The training strategies must have adult learning principles, dialogue opportunities, and value added rationale embedded. Leveraging familiar interfaces and providing step-by-step onboarding can significantly enhance user experience and facilitate a smoother transition to digital platforms, particularly when multiple redundant methodologies are available.

However, it is crucial to design these training programs with a strong focus on building confidence rather than just usability. Rooted in many of the expressed barriers to uptake are core resistance to change, lack of understanding of the value, and fears of unintended consequences. Communicating how technology can directly improve quality of life, particularly in areas like mobility, socialization, and health management, plays a key role in fostering that confidence. Improving technology uptake must address initial and sustained confidence, competence in novel environments, and motivation to change.

The transition from copper to broadband is not just a technical upgrade—it's a chance to build a more connected, inclusive future. To overcome hesitancy among aging populations, we must act decisively: invest in hands-on training, embed empathy into technology design, and reshape narratives around safety and trust. These are not optional steps—they are essential. By embracing these strategies, we can ensure older adults are not only included but empowered to thrive in a digital world.

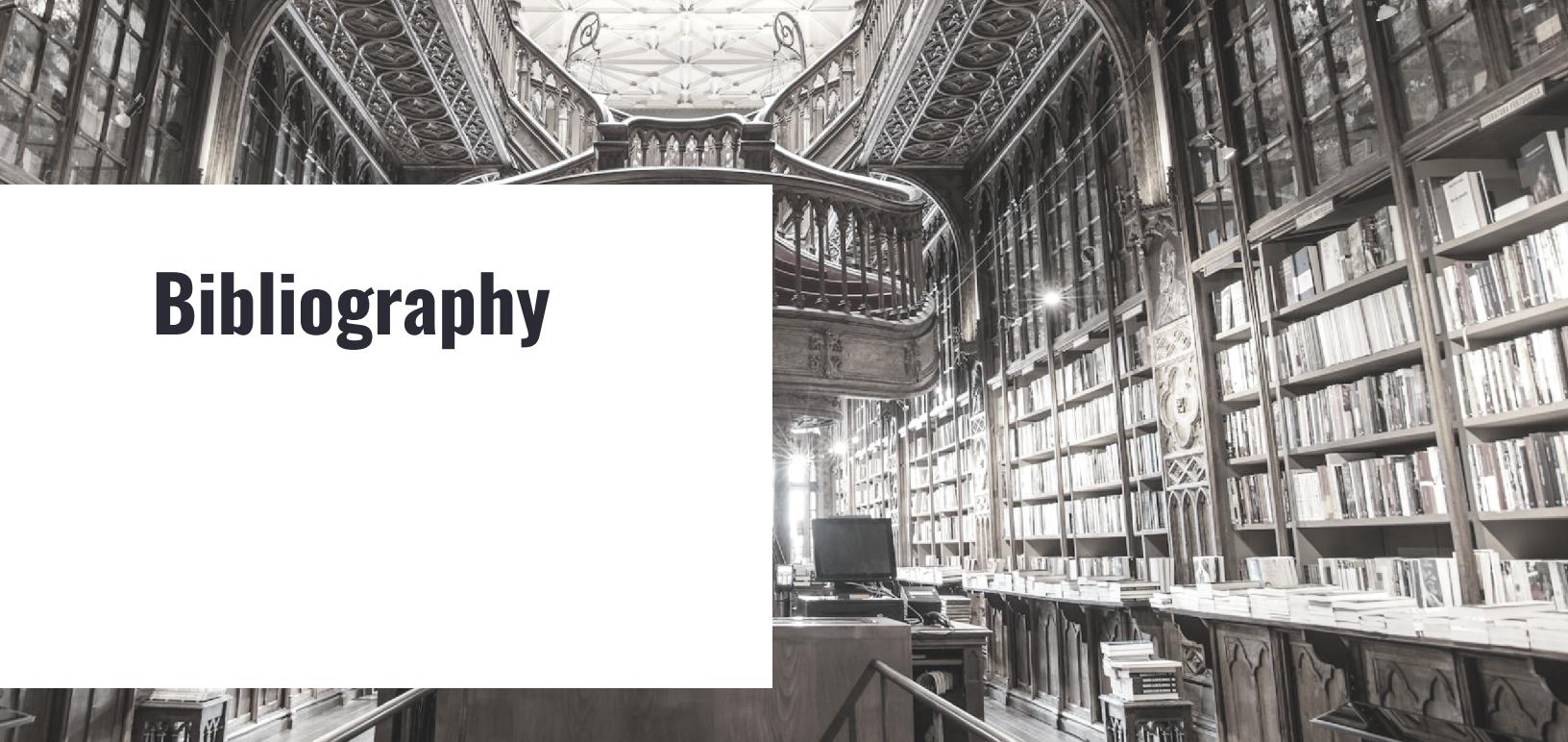
The opportunity is here. Let's move forward—together.

About the Authors

This paper was written in collaboration with the World Institute on Disability (WID) staff. WID is a non-profit 501c3 organization dedicated to continually advancing the rights and opportunities of the more than one billion people with disabilities globally.

WID staff are subject matter experts in various aspects of accessibility research, emphasizing both theoretical frameworks and practical applications. Their expertise spans digital and societal accessibility practices, where they analyze and promote effective strategies to ensure that digital content is usable by and beneficial to individuals with disabilities. This includes understanding and interpreting guidelines such as the Web Content Accessibility Guidelines (WCAG) and the Americans with Disabilities Act (ADA), which are essential for creating inclusive environments.

In addition to these guidelines and laws, WID staff actively engage in research initiatives that explore and solve for the barriers faced by people with disabilities in accessing information and services. They conduct studies that assess the effectiveness of current accessibility measures and advocate for best practices that can be adopted across different sectors. This comprehensive knowledge enables WID to provide valuable resources, training, and subject matter expertise consultation to organizations seeking to enhance their accessibility and inclusion efforts.


For more information about WID please visit www.wid.org or email info@wid.org.

Kat Zigmont served as WID's Chief Operations Officer, providing leadership in internal organizational structure and functions. As a noted accessible technology expert, Kat was instrumental in the launch and development of multiple accessibility programs and services including WID's UX testing, software and assistive technology gap analysis, and corporate systems reviews. Kat's extensive experience in accessibility and universal design provided insight to the analysis of ICT uptake hesitancy and barriers inherent with accessible technology interplay for people who are aging with disabilities.

Dawn Skaggs serves as WID's Chief Program Officer, providing programmatic direction to WID's initiatives. Dawn's expertise stems from her long-term contributions to disability-focused research and development in university systems and leadership of multiple programs identifying the social determinants of inclusion for people with disabilities. Her work at WID drives insight into promoting equitable opportunities for health, safety, and independence; and her expertise in systems change and social behavior influences provided insights into barriers and effective strategies to address ICT uptake hesitancy, particularly for the aging and disability populations.

Bibliography

AARP & Consumer Technology Association. (2025). Empowering Independence with Technology Among Adults Age 50-Plus. <https://doi.org/10.26419/res.00898.001>

Anderson, M., & Perrin, A. (2021). Tech adoption climbs among older adults. Pew Research Center. <https://www.pewresearch.org/internet/2021/01/13/tech-adoption-climbs-among-older-adults/>

Asghar, I., Cang, S., & Yu, H. (2018). Usability evaluation of assistive technologies through qualitative research focusing on people with mild dementia. *Computers in Human Behavior*, 79, 192–201. <https://doi.org/10.1016/j.chb.2017.10.025>

Berkowsky, R. W., Sharit, J., & Czaja, S. J. (2018). Factors predicting decisions about technology adoption among older adults. *Innovation in Aging*, 1(3), 1–12. doi:10.1093/geroni/igy002

Ciccarelli, M., Mak, D., McKenzie, A., Zubrinich, S., & Clifton, C. (2017). The importance of trust in the adoption and use of intelligent assistive technology by older adults to support aging in place: Scoping review protocol. *JMIR Research Protocols*, 6(11), e218. <https://doi.org/10.2196/resprot.8091>

Cotten, S. R., Yost, E. A., Berkowsky, R. W., Winstead, V., & Anderson, W. A. (2016). Designing technology training for older adults in continuing care retirement communities. CRC Press.

Czaja, S. J., & Sharit, J. (2013). Designing training and instructional programs for older adults. CRC Press.

Goggin, G., & Newell, C. (2007). Disability in Australia: Exposing a social apartheid. UNSW Press.

Hargittai, E. (2002). Second-level digital divide: Differences in people's online skills. *First Monday*, 7(4). Retrieved from http://firstmonday.org/issues/issue7_4/hargittai/index.html

Hedman, A., Lindqvist, E., & Nygård, L. (2016). How older adults with mild cognitive impairment relate to technology as part of present and future everyday life: A qualitative study. *BMC Geriatrics*, 16(1), 73. <https://doi.org/10.1186/s12877-016-0253-7>

Jaeger, P. T. (2012). Disability and the Internet: Confronting a digital divide. Lynne Rienner Publishers.

Kim, H. N. (2021). Characteristics of Technology Adoption by Older Adults with Visual Disabilities. *International Journal of Human-Computer Interaction*.

<https://doi.org/10.1080/10447318.2021.1876359>

National Science and Technology Council. (2019). Emerging technologies to support an aging population. Executive Office of the President of the United States.

<https://trumpwhitehouse.archives.gov/wp-content/uploads/2019/03/Emerging-Tech-to-Support-Aging-2019.pdf>

Niemeijer, A. R., Depla, M. F., Frederiks, B. J., et al. (2015). The experiences of people with dementia and intellectual disabilities with surveillance technologies in residential care. *Nursing Ethics*, 22(3), 307–320.

Nygård, L. (2008). The meaning of everyday technology as experienced by people with dementia who live alone. *Dementia*, 7(4), 481–502.

Pedlow, R., Kasnitz, D., & Shuttleworth, R. (2010). Barriers to the adoption of cell phones for older people with impairments in the USA: Results from an expert review and field study. *Technology and Disability*, 22(1), 1-12. <https://doi.org/10.3233/TAD-2010-0298>

Rocheleau, J. N., Cobigo, V., Chalghoumi, H., et al. (2020). Factors affecting information technology use from the perspective of aging persons with cognitive disabilities: A scoping review of qualitative research. *Technology and Disability*, 32(1), 1–13. doi:10.3233/TAD-190242

Yusif, S., Soar, J., & Hafeez-Baig, A. (2016). Older people, assistive technologies, and the barriers to adoption: A systematic review. *International Journal of Medical Informatics*.

<https://doi.org/10.1016/j.ijmedinf.2016.07.004>

Zaman, S. B., Khan, R. K., Evans, R. G., Thrift, A. G., Maddison, R., & Islam, S. M. S. (2022). Exploring barriers to and enablers of the adoption of information and communication technology for the care of older adults with chronic diseases: Scoping review. *JMIR Aging*, 5(1), e25251.

<https://doi.org/10.2196/25251>